Cost-benefit analysis III

MPA 612: Public Management Economics

April 2, 2018

Fill out your reading report on Learning Suite!

Plan for today

Real life CBAs

Is any of this ever consistent?

Final CBA tips and tricks

Full example on your own

Current events

Real life CBAs

Washington State Institute for Public Policy

http://www.wsipp.wa.gov/BenefitCost

Society for Benefit-Cost Analysis

http://benefitcostanalysis.org/benefitcost-analysis-databases

Is any of this ever consistent?

Why were all these estimates different?

Net benefits	\$40.2	-\$128.2	\$394.3
Costs	\$354.4	\$767.6	\$913.5
Benefits	\$394.6	\$639.4	\$1,307.8
	Study 1	Study 2	Study 3

Sources of discrepancies

Omissions

Forecasting

Valuation

Estimation and measurement

Is this okay? What does this say about the reliability of CBA?

Net benefits	\$40.2	-\$128.2	\$394.3
Costs	\$354.4	\$767.6	\$913.5
Benefits	\$394.6	\$639.4	\$1,307.8
	Study 1	Study 2	Study 3

What do we do about this?

Sensitivity analyze the heck out of it

...and include lots of caveats

CBA is a decision-making tool, not a budget

Final CBA tips and tricks

Working with ∞ and working with projects of different lengths

Project gives \$100 in benefits for 10 years

Discount rate: 3%

$$PV = \frac{X}{(1+r)^1} + \frac{X}{(1+r)^2} + \dots + \frac{X}{(1+r)^n}$$

$$PV = \sum_{t=1}^{n} \frac{X_t}{(1+r)^t}$$

Project gives \$100 in benefits for 250 years (or ∞ years)

Discount rate: 3%

$$PV = \frac{X}{(1+r)^1} + \frac{X}{(1+r)^2} + \dots + \frac{X}{(1+r)^\infty}$$

$$PV = \sum_{t=1}^{\infty} \frac{X_t}{(1+r)^t}$$

Perpetuity (aka annuity) Constant stream of money that lasts forever and ever

$$PV_{\text{Perpetuity}} = \frac{\Lambda}{r}$$

Project 1

NPV: \$31,519

Duration: 15 years

Discount rate: 5%

Project 2

NPV: \$28,779

Duration: 8 years

Discount rate: 5%

Which one is better?

Equivalent annual net benefit (EANB)

The annual benefit scaled to the amount needed to reach the NPV

Higher = better

Full example on your own